We show a nearly optimal lower bound on the length of linear relaxed locally decodable codes (RLDCs). Specifically, we prove that any $q$-query linear RLDC $C\colon \{0,1\}^k \to \{0,1\}^n$ must satisfy $n = k^{1+Ω(1/q)}$. This bound closely matches the known upper bound of $n = k^{1+O(1/q)}$ by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (STOC 2004). Our proof introduces the notion of robust daisies, which are relaxed sunflowers with pseudorandom structure, and leverages a new spread lemma to extract dense robust daisies from arbitrary distributions.
翻译:我们证明了线性松弛局部可译码码(RLDC)长度的近乎最优下界。具体而言,我们证明对于任意$q$查询线性RLDC $C\\colon \\{0,1\\}^k \\to \\{0,1\\}^n$,必须满足$n = k^{1+\\Omega(1/q)}$。该下界与Ben-Sasson、Goldreich、Harsha、Sudan和Vadhan(STOC 2004)已知的$n = k^{1+O(1/q)}$上界近乎匹配。我们的证明引入了鲁棒菊花的概念——这是一种具有伪随机结构的松弛向日葵,并利用新的扩散引理从任意分布中提取稠密鲁棒菊花。