We show a nearly optimal lower bound on the length of linear relaxed locally decodable codes (RLDCs). Specifically, we prove that any $q$-query linear RLDC $C\colon \{0,1\}^k \to \{0,1\}^n$ must satisfy $n = k^{1+Ω(1/q)}$. This bound closely matches the known upper bound of $n = k^{1+O(1/q)}$ by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (STOC 2004). Our proof introduces the notion of robust daisies, which are relaxed sunflowers with pseudorandom structure, and leverages a new spread lemma to extract dense robust daisies from arbitrary distributions.


翻译:我们证明了线性松弛局部可译码码(RLDC)长度的近乎最优下界。具体而言,我们证明对于任意$q$查询线性RLDC $C\\colon \\{0,1\\}^k \\to \\{0,1\\}^n$,必须满足$n = k^{1+\\Omega(1/q)}$。该下界与Ben-Sasson、Goldreich、Harsha、Sudan和Vadhan(STOC 2004)已知的$n = k^{1+O(1/q)}$上界近乎匹配。我们的证明引入了鲁棒菊花的概念——这是一种具有伪随机结构的松弛向日葵,并利用新的扩散引理从任意分布中提取稠密鲁棒菊花。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员