We give a polynomial-time approximation algorithm for the (not necessarily metric) $k$-Median problem. The algorithm is an $α$-size-approximation algorithm for $α< 1 + 2 \ln(n/k)$. That is, it guarantees a solution having size at most $α\times k$, and cost at most the cost of any size-$k$ solution. This is the first polynomial-time approximation algorithm to match the well-known bounds of $H_Δ$ and $1 + \ln(n/k)$ for unweighted Set Cover (a special case) within a constant factor. It matches these bounds within a factor of 2. The algorithm runs in time $O(k m \log(n/k) \log m)$, where $n$ is the number of customers and $m$ is the instance size.
翻译:我们针对(非必为度量的)$k$-中位数问题提出了一种多项式时间近似算法。该算法是一个$α$规模近似算法,其中$α< 1 + 2 \\ln(n/k)$。这意味着它保证得到的解规模至多为$α\\times k$,且成本不超过任意规模为$k$的解的成本。这是首个多项式时间近似算法,能在常数因子内匹配无权集合覆盖(一个特例)中著名的$H_Δ$和$1 + \\ln(n/k)$界,其匹配因子为2。算法运行时间为$O(k m \\log(n/k) \\log m)$,其中$n$表示客户数量,$m$表示实例规模。