While Kronecker coefficients $g(λ,μ,ν)$ with bounded rows are polynomial-time computable via lattice-point methods, no explicit closed-form formulas have been obtained for genuinely three-row cases in the 87 years since Murnaghan's foundational work. This paper provides such formulas for the first time and identifies a universal structural boundary at parameter value 5 where elementary combinatorial patterns collapse. We analyze two independent families of genuinely three-row coefficients and establish that for $k \leq 4$, the formulas exhibit elementary structure: oscillation bounds follow the triangular-Hogben pattern, and polynomial expressions factor completely over $\mathbb{Z}$. At the critical threshold $k=5$, this structure collapses: the triangular pattern fails, and algebraic obstructions -- irreducible quadratic factors with negative discriminant -- emerge. We develop integer forcing, a proof technique exploiting the tension between continuous asymptotics and discrete integrality. As concrete results, we prove that $g((n,n,1)^3) = 2 - (n \mod 2)$ for all $n \geq 3$ -- the first explicit formula for a genuinely three-row Kronecker coefficient -- derive five explicit polynomial formulas for staircase-hook coefficients, and verify Saxl's conjecture for 132 three-row partitions.
翻译:尽管具有有界行数的克罗内克系数 $g(λ,μ,ν)$ 可通过格点方法在多项式时间内计算,但自 Murnaghan 奠基性工作以来的 87 年间,尚未获得真正三行情形的显式闭型公式。本文首次提供了此类公式,并识别出参数值 5 处存在一个普遍的结构边界,在该边界处基本组合模式发生崩塌。我们分析了两类独立的真正三行系数族,并证明当 $k \leq 4$ 时,公式呈现基本结构:振荡界遵循三角-Hogben 模式,且多项式表达式在 $\mathbb{Z}$ 上完全分解。在临界阈值 $k=5$ 处,该结构崩塌:三角模式失效,并出现代数障碍——具有负判别式的不可约二次因子。我们发展了整数强制这一证明技术,利用连续渐近性与离散整数性之间的张力。作为具体结果,我们证明了对于所有 $n \geq 3$,$g((n,n,1)^3) = 2 - (n \mod 2)$——这是首个真正三行克罗内克系数的显式公式;推导了阶梯-钩形系数的五个显式多项式公式;并验证了 Saxl 猜想对 132 个三行分划的成立。