This paper investigates the causality in the decision making of movie recommendations through the users' affective profiles. We advocate a method of assigning emotional tags to a movie by the auto-detection of the affective features in the movie's overview. We apply a text-based Emotion Detection and Recognition model, which trained by tweets short messages and transfers the learned model to detect movie overviews' implicit affective features. We vectorized the affective movie tags to represent the mood embeddings of the movie. We obtain the user's emotional features by taking the average of all the movies' affective vectors the user has watched. We apply five-distance metrics to rank the Top-N movie recommendations against the user's emotion profile. We found Cosine Similarity distance metrics performed better than other distance metrics measures. We conclude that by replacing the top-N recommendations generated by the Recommender with the reranked recommendations list made by the Cosine Similarity distance metrics, the user will effectively get affective aware top-N recommendations while making the Recommender feels like an Emotion Aware Recommender.
翻译:本文通过用户的感官剖面图调查电影建议决策的因果关系。 我们提倡一种通过自动检测电影的感官特征为电影分配情感标签的方法。 我们采用了基于文字的情感检测和识别模式, 由推特提供短信息培训, 并传输学习模型以检测电影概况的隐含情感特征。 我们通过将感官电影标签进行传导以代表电影的情绪嵌入。 我们通过使用用户所观看的所有电影的感官矢量的平均值来获取用户的情感特征。 我们应用了五个距离的度量来根据用户的情感特征对上至N电影建议进行排位。 我们发现, 相近距离指标比其他距离衡量标准效果更好。 我们的结论是, 通过用Cosine相近距离度度度度测量的重新排序的建议列表取代建议生成的上至N级建议, 用户将有效地获得感知到上到上至下的建议, 同时让建议者感觉像情感觉悟。