Diabetic foot ulcer is a severe condition that requires close monitoring and management. For training machine learning methods to auto-delineate the ulcer, clinical staff must provide ground truth annotations. In this paper, we propose a new diabetic foot ulcers dataset, namely DFUC2022, the largest segmentation dataset where ulcer regions were manually delineated by clinicians. We assess whether the clinical delineations are machine interpretable by deep learning networks or if image processing refined contour should be used. By providing benchmark results using a selection of popular deep learning algorithms, we draw new insights into the limitations of DFU wound delineation and report on the associated issues. This paper provides some observations on baseline models to facilitate DFUC2022 Challenge in conjunction with MICCAI 2022. The leaderboard will be ranked by Dice score, where the best FCN-based method is 0.5708 and DeepLabv3+ achieved the best score of 0.6277. This paper demonstrates that image processing using refined contour as ground truth can provide better agreement with machine predicted results. DFUC2022 will be released on the 27th April 2022.
翻译:糖尿病溃疡是一种严重的条件,需要密切监测和管理。为了对机器学习方法进行自动脱缩溃疡的培训,临床工作人员必须提供地面事实说明。在本文件中,我们提议一个新的糖尿病脚溃疡数据集,即DFUU2022,这是最大的分化数据集,是临床医生手工划定的溃疡区域。我们评估临床划界是可由深层学习网络通过机器解释,还是应该使用图像处理精细的轮廓。我们通过选择一些流行的深层学习算法,对DFU伤口划定的局限性进行新的洞察,并就相关问题提出报告。本文提供了一些关于基线模型的观察意见,以方便DFUCUC2022挑战与MICCAI 2022一起进行。领先板将按Dice评分排列,在那里,基于FCN的最佳方法为0.5708,DeepLabv3+达到最佳分数0.6277。本文表明,使用精细的轮廓进行图像处理,可以提供更好的机械预测结果。DFUC2022将于2022年4月27日发布。