With the continuous development of industrial IoT (IIoT) technology, network security is becoming more and more important. And intrusion detection is an important part of its security. However, since the amount of attack traffic is very small compared to normal traffic, this imbalance makes intrusion detection in it very difficult. To address this imbalance, an intrusion detection system called pretraining Wasserstein generative adversarial network intrusion detection system (PWG-IDS) is proposed in this paper. This system is divided into two main modules: 1) In this module, we introduce the pretraining mechanism in the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) for the first time, firstly using the normal network traffic to train the WGAN-GP, and then inputting the imbalance data into the pre-trained WGAN-GP to retrain and generate the final required data. 2) Intrusion detection module: We use LightGBM as the classification algorithm to detect attack traffic in IIoT networks. The experimental results show that our proposed PWG-IDS outperforms other models, with F1-scores of 99% and 89% on the 2 datasets, respectively. And the pretraining mechanism we proposed can also be widely used in other GANs, providing a new way of thinking for the training of GANs.


翻译:随着工业IoT(IIoT)技术的不断发展,网络安全正在变得越来越重要。入侵探测是其安全的一个重要部分。然而,由于攻击交通量与正常交通相比非常小,这种不平衡使得入侵探测非常困难。为了解决这一不平衡问题,本文件提议了一个入侵探测系统,称为Wasserstein 基因对抗性网络入侵探测系统(PWG-IDS),该系统分为两个主要模块:1)在这个模块中,我们首次在Wasserstein基因对抗网络中引入了培训前机制,使用梯度惩罚(WGAN-GP),首先利用正常网络交通来培训WGAN-GP,然后将不平衡数据输入预先训练过的WGAN-GP,以进行再培训并生成最终所需的数据。(2) 入侵探测模块:我们使用LightGBM作为分类算法来检测IIoT网络的攻击交通。实验结果表明,我们提议的PWG-IDS比其他模型要优,首先使用99%和89%的F-Corress,然后又广泛使用GAN机制。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
32+阅读 · 2021年9月16日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
stackGAN通过文字描述生成图片的V2项目
CreateAMind
3+阅读 · 2018年1月1日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
stackGAN通过文字描述生成图片的V2项目
CreateAMind
3+阅读 · 2018年1月1日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员