This is a tutorial and survey paper on Generative Adversarial Network (GAN), adversarial autoencoders, and their variants. We start with explaining adversarial learning and the vanilla GAN. Then, we explain the conditional GAN and DCGAN. The mode collapse problem is introduced and various methods, including minibatch GAN, unrolled GAN, BourGAN, mixture GAN, D2GAN, and Wasserstein GAN, are introduced for resolving this problem. Then, maximum likelihood estimation in GAN are explained along with f-GAN, adversarial variational Bayes, and Bayesian GAN. Then, we cover feature matching in GAN, InfoGAN, GRAN, LSGAN, energy-based GAN, CatGAN, MMD GAN, LapGAN, progressive GAN, triple GAN, LAG, GMAN, AdaGAN, CoGAN, inverse GAN, BiGAN, ALI, SAGAN, Few-shot GAN, SinGAN, and interpolation and evaluation of GAN. Then, we introduce some applications of GAN such as image-to-image translation (including PatchGAN, CycleGAN, DeepFaceDrawing, simulated GAN, interactive GAN), text-to-image translation (including StackGAN), and mixing image characteristics (including FineGAN and MixNMatch). Finally, we explain the autoencoders based on adversarial learning including adversarial autoencoder, PixelGAN, and implicit autoencoder.
翻译:这是一份关于General Aversarial网络(GAN)、对抗性自动校对器及其变体的辅导和调查文件。我们首先解释对抗性学习和香草GAN。然后解释有条件的GAN和DCGAN。引入了模式崩溃问题,并引入了各种方法,包括微型批量GAN、无滚动的GAN、BourGAN、混合GAN、D2GAN和瓦塞尔斯坦GAN,以解决这一问题。然后,解释GAN的最大可能性估计,同时解释F-GAN、对抗性变异贝耶和Bayesian GAN。然后,我们涵盖GAN、InfoGAN、GAN、LSGAN、能源基GAN、CatGAN、MMMAN、GAN、GMMMAGAGA、GANAG、Inversion GAN、OAGOAGOLAAGA、GAGAGAGO、GOLAMAGAGA、GGGGGOLA、GGOLAMAGGAMAGGGGA、GOLAMAMAGGGGA、GGGGGGA、GOLLLAMAGA、GGAMAMAMAMAMAGGGGA、GGGGALLLLLLLL、GGGA、GGGGGGA、GOLLLLL、GA、GAMAGAMAGGGAMA、GOLLLLL、GGGGGGAMAGA、GGA、GA、GA、G、GAMA、GAGAGAGAGA、GA、GA、GGGGGA、GA、GA、GA、GAMA、GGGA、GA、GA、GGAMA、GAMA、GAMAGAMA、GA、GA、GAGA、GA、GAMA、GA、GAMA、GA、GA、GALLLLLLLLLAGAGALAGA、GAGALLLLLLLLLLA、G