For the first time we provide a succinct pattern matching index for arbitrary graphs that can be built in polynomial time, which requires less space and answers queries more efficiently than the one in [SODA 2021]. We show that, given an edge-labeled graph $ G = (V, E) $, there exists a data structures of $|E /_{\le_G}|(\lceil \log|\Sigma|\rceil + \lceil\log q\rceil + 2)\cdot (1+o(1)) + |V /_{\le_G}|\cdot (1+o(1))$ bits which can be built in $ O(|E|^2 + |V /_{\le_G}|^{5 / 2}) $ time and supports pattern matching on $ G $ in $O(|P| \cdot q^2 \cdot \log(q\cdot |\Sigma|))$ time, where $ G /_{\le_G} = (V /_{\le_G}, E /_{\le_G}) $ is a quotient graph obtained by collapsing some nodes in $ G $ (so $ |V /_{\le_G}| \le |V| $ and $ |E /_{\le_G}| \le |E| $) and $ q $ is the width of the maximum co-lex relation on $ G $. Our results have relevant applications in automata theory. First, we can build a succinct data structure to decide whether a string is accepted by a given automaton. Second, starting from an automaton $ \mathcal{A} $, one can define a relation $ \preceq_\mathcal{A} $ and a quotient automaton that capture the nondeterminism of $ \mathcal{A} $, improving the results in [SODA 2021].
翻译:第一次我们为可以在多边时间构建的任意图形提供一个简洁的模型匹配索引 {SODO 2021] 。 我们显示,如果使用边缘标签的图形$G = (V,E) 美元,则存在一个 $E / le_ G ⁇ (lceil\\\ log\\\ lig\ rcele\ q\ rc\ q\ rcele\ q\ + 2\ cdot (+A1) + + V / le_ Gcdot (1+1) 需要更少的空间和更高效的查询。 我们显示, $E2 + G= $ = (VE) = $ V_ le_ le_ G 5 / 2} 美元的数据结构, 美元的时间和支持以 G$ $ = 2\ cdo, qdo qt\\\ qdot\\ log\ (q\ =_ $) 美元 = 美元 美元 美元。 美元 美元 美元 美元 美元= 美元 美元 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元== 美元= 美元= 美元= 美元== 美元= 美元= 美元= 美元= 美元= 美元= 美元==== = = = = = = = = = = = = = == = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =