An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent both interference and non-interference relationships for Gaussian distributions. Specifically, we define the new class of models, introduce global and local and pairwise Markov properties for them, and prove their equivalence. We also propose an algorithm for maximum likelihood parameter estimation for the new models, and report experimental results. Finally, we show how to compute the effects of interventions in the new models.
翻译:干预可能对其管理的单位之外的其他单位产生影响。 这种现象被称为干扰, 通常不进行改造。 在本文中, 我们提议将劳里琴- 韦尔穆斯- 弗莱登贝格和安德森- 马迪冈- 佩尔曼链条图结合起来, 以创建新型因果模型, 既代表干扰, 也代表高斯分布的不干涉关系。 具体地说, 我们定义了新型模型, 为他们引入了全球、 本地和对称的马尔科夫属性, 并证明了它们的等同性。 我们还提出了新模型最大可能性参数估算的算法, 并报告了实验结果 。 最后, 我们展示了如何计算新模型中干预措施的效果 。