By executing offloaded tasks from mobile users, edge computing augments mobile user equipments (UEs) with computing/communications resources from edge nodes (ENs), enabling new services (e.g., real-time gaming). However, despite being more resourceful than UEs, allocating ENs' resources to a given favorable set of users (e.g., closer to ENs) may block other UEs from their services. This is often the case for most existing approaches that only aim to maximize the network social welfare or minimize the total energy consumption but do not consider the computing/battery status of each UE. This work develops an energy-based proportional-fair framework to serve all users with multiple tasks while considering both their service requirements and energy/battery levels in a multi-layer edge network. The resulting problem for offloading tasks and allocating resources toward the tasks is a Mixed-Integer Nonlinear Programming, which is NP-hard. To tackle it, we leverage the fact that the relaxed problem is convex and propose a distributed algorithm, namely the dynamic branch-and-bound Benders decomposition (DBBD). DBBD decomposes the original problem into a master problem (MP) for the offloading decisions and multiple subproblems (SPs) for resource allocation. To quickly eliminate inefficient offloading solutions, MP is integrated with powerful Benders cuts exploiting the ENs' resource constraints. We then develop a dynamic branch-and-bound algorithm (DBB) to efficiently solve MP considering the load balance among ENs. SPs can either be solved for their closed-form solutions or be solved in parallel at ENs, thus reducing the complexity. The numerical results show that DBBD returns the optimal solution in maximizing the proportional fairness among UEs. DBBD has higher fairness indexes, i.e., Jain's index and min-max ratio, in comparison with the existing ones that minimize the total consumed energy.


翻译:通过执行移动用户的卸载任务,边缘计算通过边节点(ENs)的计算/通信资源增加移动用户设备(UEs),实现新的服务(例如实时游戏 ) 。然而,尽管比Ues更有智慧,但将ENs的资源分配给给给定的有利用户群(例如更接近ENs)可能会阻碍其他用户的服务。对于多数现有办法来说,这些办法的目的只是最大限度地提高网络的复杂程度社会福利或将能源消耗总量降至最低,但不考虑每个Ues的计算/电池状态。这项工作开发了一个基于能源的按比例公平框架,为所有用户提供多种任务(例如实时游戏游戏),尽管它们比Ues更有智慧,但是将ENES的资源分配到多层边缘网络,由此产生的问题就是卸载任务和将非线性编程编程编程(我们利用宽松的问题解决了内部的节流问题,并提议一个分布式的算法,即以动态版和节流的节流的节流法,从而让IMFS-D(现在的IMFD) 将资源递减到IMFD 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员