We investigate the constant-depth circuit complexity of the Isomorphism Problem, Minimum Generating Set Problem (MGS), and Sub(quasi)group Membership Problem (Membership) for groups and quasigroups (=Latin squares), given as input in terms of their multiplication (Cayley) tables. Despite decades of research on these problems, lower bounds for these problems even against depth-$2$ AC circuits remain unknown. Perhaps surprisingly, Chattopadhyay, Tor\'an, and Wagner (FSTTCS 2010; ACM Trans. Comput. Theory, 2013) showed that Quasigroup Isomorphism could be solved by AC circuits of depth $O(\log \log n)$ using $O(\log^2 n)$ nondeterministic bits, a class we denote $\exists^{\log^2(n)}FOLL$. We narrow this gap by improving the upper bound for many of these problems to $quasiAC^0$, thus decreasing the depth to constant. In particular, we show: - MGS for quasigroups is in $\exists^{\log^2(n)}\forall^{\log n}NTIME(\mathrm{polylog}(n))\subseteq quasiAC^0$. Papadimitriou and Yannakakis (J. Comput. Syst. Sci., 1996) conjectured that this problem was $\exists^{\log^2(n)}P$-complete; our results refute a version of that conjecture for completeness under $quasiAC^0$ reductions unconditionally, and under polylog-space reductions assuming EXP $\neq$ PSPACE. - MGS for groups is in $AC^{1}(L)$, improving on the previous upper bound of $P$ (Lucchini & Thakkar, J. Algebra, 2024). - Quasigroup Isomorphism belongs to $\exists^{\log^2(n)}AC^0(DTISP(\mathrm{polylog},\log)\subseteq quasiAC^0$, improving on the previous bound of $\exists^{\log^2(n)}L\cap\exists^{\log^2(n)}FOLL\subseteq quasiFOLL$ (Chattopadhyay, Tor\'an, & Wagner, ibid.; Levet, Australas. J. Combin., 2023). Our results suggest that understanding the constant-depth circuit complexity may be key to resolving the complexity of problems concerning (quasi)groups in the multiplication table model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
30+阅读 · 2022年3月12日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员