We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on $n$ variables taking values in $\{0,\ldots,q-1\}$, we prove that improving over the trivial approximability by a factor of $q$ requires $\Omega(n)$ space even on instances with $O(n)$ constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires $\Omega(n)$ space. The key technical core is an optimal, $q^{-(k-1)}$-inapproximability for the \textsf{Max $k$-LIN}-$\bmod\; q$ problem, which is the Max CSP problem where every constraint is given by a system of $k-1$ linear equations $\bmod\; q$ over $k$ variables. Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the MaxCut problem in graphs. MaxCut corresponds roughly to the case of \textsf{Max $k$-LIN}-$\bmod\; q$ with ${k=q=2}$. For general CSPs in the streaming setting, prior results only yielded $\Omega(\sqrt{n})$ space bounds. In particular no linear space lower bound was known for an approximation factor less than $1/2$ for {\em any} CSP. Extending the work of Kapralov and Krachun to \textsf{Max $k$-LIN}-$\bmod\; q$ to $k>2$ and $q>2$ (while getting optimal hardness results) is the main technical contribution of this work. Each one of these extensions provides non-trivial technical challenges that we overcome in this work.
翻译:我们考虑在流中设置限制满意度问题的近似性。 对于美元变量的每个限制满意度问题(CSP), 以美元计值为$0,\ldots,q-1 ⁇, 我们证明, 以美元计值的微小接近性改善需要美元=q美元; 即便在美元( n) 的限制情况下, 也存在 omega(n) 。 我们还确定了一个广泛的子类问题, 与微不足道的接近性相比, 需要 $\Omega( n) 空间空间空间空间。 关键技术核心是最佳的, $qló- (k-1) 美元(k-1美元), 美元(k-1美元) 美元(k) 美元(k) 美元(k) 美元(k), 美元(k) 美元(k) 美元(klock) ; 美元(c) 美元(x) 美元(x) 美元(x) 美元(x=美元) 美元(xx) 美元(x) 美元(x) 美元(x) 美元) 美元(x(x) 美元(x(x(x) (x) x) x(x) (x) x) x(x(x) x(x) x) x) x(x) x(x(x) x) x(x(x) x) xx(x) x(x(x) x(x(x(x) x) x(x(x) x) x(x) x(x) x(x(xxx) x(x) x) x(x) x(x(x) x) x(x(x) x) x) x(x(x) x(x(x) x) x) x) x) x) x(x(x) x) x(x) x(x(x) x) x) x) x) x) x(x(x(x(x(x(x) x) x(x(x) x)