Multiscale systems are ubiquitous in science and technology, but are notoriously challenging to simulate as short spatiotemporal scales must be appropriately linked to emergent bulk physics. When expensive high-dimensional dynamical systems are coarse-grained into low-dimensional models, the entropic loss of information leads to emergent physics which are dissipative, history-dependent, and stochastic. To machine learn coarse-grained dynamics from time-series observations of particle trajectories, we propose a framework using the metriplectic bracket formalism that preserves these properties by construction; most notably, the framework guarantees discrete notions of the first and second laws of thermodynamics, conservation of momentum, and a discrete fluctuation-dissipation balance crucial for capturing non-equilibrium statistics. We introduce the mathematical framework abstractly before specializing to a particle discretization. As labels are generally unavailable for entropic state variables, we introduce a novel self-supervised learning strategy to identify emergent structural variables. We validate the method on benchmark systems and demonstrate its utility on two challenging examples: (1) coarse-graining star polymers at challenging levels of coarse-graining while preserving non-equilibrium statistics, and (2) learning models from high-speed video of colloidal suspensions that capture coupling between local rearrangement events and emergent stochastic dynamics. We provide open-source implementations in both PyTorch and LAMMPS, enabling large-scale inference and extensibility to diverse particle-based systems.


翻译:多尺度系统在科学与技术中普遍存在,但因其短时空尺度必须与涌现的宏观物理特性恰当关联而 notoriously 难以模拟。当昂贵的高维动力系统被粗粒化为低维模型时,信息熵的损失会导致涌现的物理行为呈现耗散性、历史依赖性和随机性。为了从粒子轨迹的时间序列观测中机器学习粗粒化动力学,我们提出了一种基于度量辛括号形式的框架,该框架通过构造保持这些特性;尤为重要的是,该框架保证了热力学第一和第二定律的离散形式、动量守恒,以及对捕捉非平衡统计至关重要的离散涨落-耗散平衡。我们首先抽象地引入数学框架,随后专门化到粒子离散化情形。由于熵态变量的标签通常难以获得,我们提出了一种新颖的自监督学习策略来识别涌现的结构变量。我们在基准系统上验证了该方法,并通过两个具有挑战性的示例展示了其实用性:(1) 在具有挑战性的粗粒化水平下对星形聚合物进行粗粒化,同时保持非平衡统计特性;(2) 从胶体悬浮液的高速视频中学习模型,以捕捉局部重排事件与涌现随机动力学之间的耦合。我们提供了 PyTorch 和 LAMMPS 的开源实现,支持大规模推理并适用于多样化的粒子系统。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】组合能量概念无监督学习
专知会员服务
14+阅读 · 2021年11月5日
专知会员服务
30+阅读 · 2021年2月26日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关VIP内容
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员