The Finite State Projection (FSP) method approximates the Chemical Master Equation (CME) by restricting the dynamics to a finite subset of the (typically infinite) state space, enabling direct numerical solution with computable error bounds. Adaptive variants update this subset in time, but multiscale systems with widely separated reaction rates remain challenging, as low-probability bottleneck states can carry essential probability flux and the dynamics alternate between fast transients and slowly evolving stiff regimes. We propose a flux-based adaptive FSP method that uses probability flux to drive both state-space pruning and time-step selection. The pruning rule protects low-probability states with large outgoing flux, preserving connectivity in bottleneck systems, while the time-step rule adapts to the instantaneous total flux to handle rate constants spanning several orders of magnitude. Numerical experiments on stiff, oscillatory, and bottleneck reaction networks show that the method maintains accuracy while using substantially smaller state spaces.
翻译:有限状态投影(FSP)方法通过将动力学限制在(通常为无限的)状态空间的一个有限子集内来近似化学主方程(CME),从而能够以可计算的误差界进行直接数值求解。自适应变体随时间更新该子集,但对于反应速率差异巨大的多尺度系统,由于低概率瓶颈状态可能携带重要的概率通量,且动力学在快速瞬态与缓慢演化的刚性状态之间交替,此类系统仍具挑战性。我们提出一种基于通量的自适应FSP方法,该方法利用概率通量驱动状态空间剪枝和时间步长选择。剪枝规则保护具有大流出通量的低概率状态,以保持瓶颈系统中的连通性;而时间步长规则则根据瞬时总通量自适应调整,以处理跨越数个数量级的速率常数。在刚性、振荡及瓶颈反应网络上的数值实验表明,该方法在显著减小状态空间的同时保持了计算精度。