Large-scale wireless testbeds are being increasingly used in developing and evaluating new solutions for next generation wireless networks. Among others, high-fidelity FPGA-based emulation platforms have unique capabilities for faithfully modeling real-world wireless environments in real-time and at scale, while guaranteeing repeatability. However, the reliability of the solutions tested on emulation platforms heavily depends on the precision of the emulation process, which is often overlooked. To address this unmet need in wireless network emulator-based experiments, in this paper we present CaST, a Channel emulation generator and Sounder Toolchain for creating and characterizing realistic wireless network scenarios with high accuracy. CaST consists of (i) a framework for creating mobile wireless scenarios from ray-tracing models for FPGA-based emulation platforms, and (ii) a containerized Software Defined Radio-based channel sounder to precisely characterize the emulated channels. We demonstrate the use of CaST by designing, deploying and validating multi-path mobile scenarios on Colosseum, the world's largest wireless network emulator. Results show that CaST achieves <= 20 ns accuracy in sounding Channel Impulse Response tap delays, and 0.5 dB accuracy in measuring tap gains.


翻译:大型无线试床正在越来越多地用于开发和评价新一代无线网络的新解决方案,除其他外,高纤维度FPGA基础模拟平台具有在实时和规模上忠实模拟真实世界无线环境的独特能力,同时保证重复性;然而,在模拟平台上测试的解决方案的可靠性在很大程度上取决于模拟程序的精确性,这往往被忽视。为了满足无线网络模拟器实验中尚未满足的需要,我们在本文件中介绍了CAST、一个频道模拟发电机和Sound工具链,以便创建和描述真实的无线网络假设情景。CAST包括(一)一个框架,用于从基于FPGA的模拟平台的光度模型中创建移动无线假设情景,以及(二)一个集装箱化软件定义的无线电频道声音声音仪,以精确地描述被效仿的频道。我们通过设计、部署和验证全球最大的无线网络模拟器Colosseum上的多路路移动假设情景,以创建和定性现实无线网络情景。结果显示,CAST在测试20号频道上测量了RiveB的精确度,测量了Myal Instal Recal laction Ral 20 。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月16日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员