We find the exact typical error exponent of constant composition generalized random Gilbert-Varshamov (RGV) codes over DMCs channels with generalized likelihood decoding. We show that the typical error exponent of the RGV ensemble is equal to the expurgated error exponent, provided that the RGV codebook parameters are chosen appropriately. We also prove that the random coding exponent converges in probability to the typical error exponent, and the corresponding non-asymptotic concentration rates are derived. Our results show that the decay rate of the lower tail is exponential while that of the upper tail is double exponential above the expurgated error exponent. The explicit dependence of the decay rates on the RGV distance functions is characterized.
翻译:我们发现对 DMC 频道的常规构成通用随机 Gilbert-Varshamov (RGV) 代码(RGV) 的精确典型错误。 我们发现, RGV 组合的典型错误提示值相当于清除错误提示值, 只要对 RGV 代码簿参数进行适当选择。 我们还证明, 随机编码提示值在概率上会与典型错误提示值一致, 并得出相应的非无药性浓度率。 我们的结果显示, 低尾的衰变速度是指数化的, 而上尾的衰变速度比排出错误提示值高一倍。 RGV 的衰变速度明显依赖 RGV 距离函数 。