Tariff setting in public transportation networks is an important challenge. A popular approach is to partition the network into fare zones ("zoning") and fix journey prices depending on the number of traversed zones ("pricing"). In this paper, we focus on finding revenue-optimal solutions to the zoning problem for a given concave pricing function. We consider tree networks with $n$ vertices, since trees already pose non-trivial algorithmic challenges. Our main results are efficient algorithms that yield a simple $\mathcal{O}(\log n)$-approximation as well as a more involved $\mathcal{O}(\log n/\log \log n)$-approximation. We show how to solve the problem exactly on rooted instances, in which all demand arises at the same source. For paths, we prove strong NP-hardness and outline a PTAS. Moreover, we show that computing an optimal solution is in FPT or XP for several natural problem parameters.


翻译:公共交通网络中的票价设定是一项重要挑战。一种常用方法是将网络划分为票价分区("分区"),并根据行程穿越的分区数量确定价格("定价")。本文针对给定的凹定价函数,重点研究寻找分区问题的收益最优解。我们考虑具有$n$个顶点的树状网络,因为树结构本身已构成非平凡的算法挑战。主要研究成果是高效算法:一个提供简单的$\mathcal{O}(\log n)$近似解,另一个更复杂的算法提供$\mathcal{O}(\log n/\log \log n)$近似解。我们展示了如何在所有需求均源于同一出发点的根节点实例中精确求解该问题。对于路径网络,我们证明了问题的强NP困难性并概述了PTAS方案。此外,我们证明了针对多个自然问题参数,计算最优解属于FPT或XP复杂度类。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月22日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员