In clinical psychology, longitudinal studies are often conducted to understand developmental trends over a period of time. Latent class growth analysis is a standard and popular statistical approach to identify underlying subpopulations with heterogenous trends. Several implementations, such as LCGA (Mplus), proc traj (SAS) and package lcmm (R) are specially designed to perform latent growth analysis. Motivated by data collection of psychological instruments over time in the largest cancer centre in Canada, we compare these implementations using various simulated Edmonton Symptom Assessment System revised (ESAS-r) scores, an ordinal outcome from 0 to 10, in a large data-set consisting of more than 20,000 patients collected through the Distress Assessment and Response Tool (DART) from the Princess Margaret Cancer Center. We have found that both Mplus and lcmm lead to high correct classification rate, but Proc Traj tends to over estimate the number of classes and fails to converge. While Mplus is computationally more affordable than lcmm, it has a limit of maximum 10 levels for ordinal data. We therefore suggest first analyzing data on the original scale using lcmm. If computational time becomes an issue, then one can group the scores into categories and implement them in Mplus.
翻译:在临床心理学中,常进行纵向研究,以了解一段时间内的发展趋势; 中产阶级增长分析是一种标准、流行的统计方法,用以查明具有异质趋势的下层人口群; 一些执行项目,如LCGA(Mplus)、proc traj(SAS)和包 lcmm(R), 专门设计用于进行潜在增长分析; 在加拿大最大的癌症中心,通过长期收集心理工具,我们利用各种模拟的Edmonton Symptom评估系统(ESAS-r)订正分数(ESAS-r)对这些执行项目进行比较; 在大型数据集中,0至10分的正值结果,由20,000名以上病人组成,通过玛格丽特公主癌症中心的难情评估和反应工具(DART)收集。 我们发现, Mplus和 lcmm 都会导致高的分类率,但Proc Traj往往过高估计班级数量,无法趋同。 虽然Mplus的计算能力比 lcmm要高得多,但是, 却有最高10级数据限度。 因此,我们首先用 lcmm 来分析最初的等级的数据,然后用Icm 进行计算。