Since the emergence of wireless communication networks, a plethora of research papers focus their attention on the quality aspects of wireless links. The analysis of the rich body of existing literature on link quality estimation using models developed from data traces indicates that the techniques used for modeling link quality estimation are becoming increasingly sophisticated. A number of recent estimators leverage \gls{ML} techniques that require a sophisticated design and development process, each of which has a great potential to significantly affect the overall model performance. In this paper, we provide a comprehensive survey on link quality estimators developed from empirical data and then focus on the subset that use \gls{ML} algorithms. We analyze \gls{ML}-based \gls{LQE} models from two perspectives using performance data. Firstly, we focus on how they address quality requirements that are important from the perspective of the applications they serve. Secondly, we analyze how they approach the standard design steps commonly used in the ML community. Having analyzed the scientific body of the survey, we review existing open source datasets suitable for \gls{LQE} research. Finally, we round up our survey with the lessons learned and design guidelines for \gls{ML}-based \gls{LQE} development and dataset collection.


翻译:自无线通信网络出现以来,大量研究论文都将其注意力集中在无线链接的质量方面。利用数据跟踪所开发模型对现有文献中关于链接质量估算的丰富内容进行分析表明,用于模拟链接质量估测的技术正在变得越来越复杂。最近一些估算者利用了需要复杂设计和开发过程的技术,每个技术都有很大潜力对总体模型性能产生重大影响。在本文件中,我们提供了一份关于从经验数据中开发的链接质量估测器的全面调查,然后侧重于使用数据轨算法的子集。我们从两个角度用绩效数据分析基于\gls{ML}的\gls{LQ}模型。首先,我们侧重于如何从它们所服务的应用角度处理重要的质量要求。第二,我们分析了它们如何对待ML社区通常使用的标准设计步骤。在分析了调查的科学机构之后,我们审查了适合使用\gls{LQ} 研究的现有开放源数据集。我们从两个角度分析了基于\gls{LQ} 模型的模型。我们用数据采集了我们所学到的教训和设计指南。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
27+阅读 · 2020年12月24日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
15+阅读 · 2020年2月6日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员