Computer vision systems are designed to work well within the context of everyday photography. However, artists often render the world around them in ways that do not resemble photographs. Artwork produced by people is not constrained to mimic the physical world, making it more challenging for machines to recognize. This work is a step toward teaching machines how to categorize images in ways that are valuable to humans. First, we collect a large-scale dataset of contemporary artwork from Behance, a website containing millions of portfolios from professional and commercial artists. We annotate Behance imagery with rich attribute labels for content, emotions, and artistic media. Furthermore, we carry out baseline experiments to show the value of this dataset for artistic style prediction, for improving the generality of existing object classifiers, and for the study of visual domain adaptation. We believe our Behance Artistic Media dataset will be a good starting point for researchers wishing to study artistic imagery and relevant problems.
翻译:计算机视觉系统的设计在日常摄影中非常有效。然而,艺术家往往以与照片不同的方式使周围的世界变得与照片不相像。人们制作的艺术作品并不局限于模仿物理世界,使机器更难辨认。这项工作是教机器如何以对人类有价值的方式对图像进行分类的一步。首先,我们从Behance收集了当代艺术作品的大规模数据集,Behance是一个包含数以百万计的专业和商业艺术家组合的网站。我们给Behance图像贴上内容、情感和艺术媒体的丰富属性标签。此外,我们进行基线实验,以展示这一数据集对于艺术风格预测的价值,提高现有物体分类者的普遍性,以及研究视觉领域适应性。我们相信,我们的Behance艺术媒体数据集将成为研究人员研究艺术图像和相关问题的良好起点。