Optical coherence tomography angiography (OCTA) is a novel noninvasive imaging modality for visualization of retinal blood flow in the human retina. Using specific OCTA imaging biomarkers for the identification of pathologies, automated image segmentations of the blood vessels can improve subsequent analysis and diagnosis. We present a novel method for the vessel identification based on frequency representations of the image, in particular, using so-called Gabor filter banks. The algorithm is evaluated on an OCTA image data set from $10$ eyes acquired by a Cirrus HD-OCT device. The segmentation outcomes received very good qualitative visual evaluation feedback and coincide well with device-specific values concerning vessel density. Concerning locality our segmentations are even more reliable and accurate. Therefore, we suggest the computation of adaptive local vessel density maps that allow straightforward analysis of retinal blood flow.
翻译:人类视网膜视网膜视网膜血液流动可视化的新型非侵入性成像模式,利用特定的OCTA成像生物标志物识别病理学,血管的自动成像分解可改进随后的分析和诊断;我们根据图像的频率表示方式,特别是利用所谓的加博过滤库,为船只识别提供了一个新颖的方法;根据Cirrus HD-OCT设备从Cirrus HD-OCT设备获得的100美元眼睛所收集的OCTA图像数据,对算法进行了评价;分解结果获得高质量的视觉评价反馈,并与关于船只密度的设备特定值吻合;关于我们的分解地点,我们更可靠、更准确。因此,我们建议计算适应性的地方船只密度图,以便对视网血流进行直接分析。