In this paper, we propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge. We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels, as well as the POS tags unifiedly, and a local-attention module encoding POS tags for better term boundary detection. During pairing, we then adopt Biaffine and Triaffine scoring for high-order aspect-opinion term pairing, in the meantime re-harnessing the syntax-enriched representations in LAGCN for syntactic-aware scoring. Experimental results on four benchmark datasets demonstrate that our model outperforms current state-of-the-art baselines, meanwhile yielding explainable predictions with syntactic knowledge.
翻译:在本文中,我们建议通过纳入丰富的合成知识来强化对称的方面和观点提取(PaOTE)任务。 我们首先为编码合成特征建立一个语法聚合编码编码器, 包括用于模拟依赖边缘和标签的标签质量图形革命网络(LAGCN), 以及统一的 POS 标签, 以及一个本地关注模块编码 POS 标签, 以更好地进行边界探测。 在配对过程中, 我们随后采用Biaffine 和 Triaffine 评分, 用于高阶侧对齐, 同时在 LAGCN 中重新定位超载的语法合成特征代表, 用于合成抗衡评分。 四个基准数据集的实验结果显示, 我们的模型超越了当前最先进的基线, 同时产生具有合成知识的可解释的预测。