Accurately monitoring road traffic state and speed is crucial for various applications, including travel time prediction, traffic control, and traffic safety. However, the lack of sensors often results in incomplete traffic state data, making it challenging to obtain reliable information for decision-making. This paper proposes a novel method for imputing traffic state data using Gaussian processes (GP) to address this issue. We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel, which can better model the propagation of traffic waves in traffic flow data. This method can be applied to impute traffic state data from fixed sensors or probe vehicles. Moreover, the rotated GP method provides statistical uncertainty quantification for the imputed traffic state, making it more reliable. We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes. We evaluate our method using real-world traffic data from the Next Generation simulation (NGSIM) and HighD programs. Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation scheme from 5% to 50% available trajectories, mimicking different CV penetration rates in a mixed traffic environment. Results show that our method outperforms state-of-the-art methods in terms of estimation accuracy, efficiency, and robustness.
翻译:准确监测道路交通状况和速度对于各种应用至关重要,包括旅行时间预测、交通控制和交通安全。然而,传感器的缺乏往往导致交通状态数据不完整,使得获取可靠的决策信息变得具有挑战性。本文件提出了使用高山流程估算交通状况数据的新颖方法,以解决这一问题。我们提出了一个内核旋转再平衡计划,将标准的异位性GP内核转化为动脉内核,这可以更好地模拟交通流量数据的传播。这种方法可以用来浸透固定传感器或探测车辆的交通状态数据。此外,轮换的GP方法为预测交通状况提供了统计不确定性的量化,使之更加可靠。我们还将我们的方法推广到多输出GP,从而可以同时估算多航道的交通状况。我们用下一代模拟(NGSIM)和高D程序中的真实世界交通数据来评估我们的方法。考虑到当前和未来连接车辆的混合交通状态数据,50条际交通状况的交通状况、我们驱动的C型车辆的当前和将来的交通流量比率,以及我们驱动的C型车辆的当前和将来的汇率,显示我们所具备的C型速度的汇率,以及我们驱动车辆的目前和目前不同的车型系统。</s>