In general, approximating classes of functions defined over high-dimensional input spaces by linear combinations of a fixed set of basis functions or ``features'' is known to be hard. Typically, the worst-case error of the best basis set decays only as fast as $Θ\(n^{-1/d}\)$, where $n$ is the number of basis functions and $d$ is the input dimension. However, there are many examples of high-dimensional pattern recognition problems (such as face recognition) where linear combinations of small sets of features do solve the problem well. Hence these function classes do not suffer from the ``curse of dimensionality'' associated with more general classes. It is natural then, to look for characterizations of high-dimensional function classes that nevertheless are approximated well by linear combinations of small sets of features. In this paper we give a general result relating the error of approximation of a function class to the covering number of its ``convex core''. For one-hidden-layer neural networks, covering numbers of the class of functions computed by a single hidden node upper bound the covering numbers of the convex core. Hence, using standard results we obtain upper bounds on the approximation rate of neural network classes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员