Molecular dynamics (MD) simulations have become indispensable for exploring tribological deformation patterns at the atomic scale. However, transforming the resulting high-dimensional data into interpretable deformation pattern maps remains a resource-intensive and largely manual process. In this work, we introduce a data-driven workflow that automates this interpretation step using unsupervised and supervised learning. Grain-orientation-colored computational tomograph pictures obtained from CuNi alloy simulations were first compressed through an autoencoder to a 32-dimensional global feature vector. Despite this strong compression, the reconstructed images retained the essential microstructural motifs: grain boundaries, stacking faults, twins, and partial lattice rotations, while omitting only the finest defects. The learned representations were then combined with simulation metadata (composition, load, time, temperature, and spatial position) to train a CNN-MLP model to predict the dominant deformation pattern. The resulting model achieves a prediction accuracy of approximately 96% on validation data. A refined evaluation strategy, in which an entire spatial region containing distinct grains was excluded from training, provides a more robust measure of generalization. The approach demonstrates that essential tribological deformation signatures can be automatically identified and classified from structural images using Machine Learning. This proof of concept constitutes a first step towards fully automated, data-driven construction of tribological mechanism maps and, ultimately, toward predictive modeling frameworks that may reduce the need for large-scale MD simulation campaigns.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员