The availability and interactive nature of social media have made them the primary source of news around the globe. The popularity of social media tempts criminals to pursue their immoral intentions by producing and disseminating fake news using seductive text and misleading images. Therefore, verifying social media news and spotting fakes is crucial. This work aims to analyze multi-modal features from texts and images in social media for detecting fake news. We propose a Fake News Revealer (FNR) method that utilizes transform learning to extract contextual and semantic features and contrastive loss to determine the similarity between image and text. We applied FNR on two real social media datasets. The results show the proposed method achieves higher accuracies in detecting fake news compared to the previous works.
翻译:社交媒体的可获性和互动性使社交媒体成为全球新闻的主要来源。社交媒体的流行通过利用诱惑性文字和误导性图像制作和传播假消息,诱使犯罪分子追求其不道德的意图。因此,核实社交媒体新闻和识别假消息至关重要。这项工作旨在分析社交媒体文本和图像中的多种模式特征,以探测假消息。我们提出了一个假新闻阅读器(FNR)方法,该方法利用改造学习来提取背景和语义特征以及对比性损失来确定图像和文字的相似性。我们在两个真实的社会媒体数据集中应用了FNR。结果显示,拟议方法在发现假消息方面比以往的作品更精准。