To study discrimination in automated decision-making systems, scholars have proposed several definitions of fairness, each expressing a different fair ideal. These definitions require practitioners to make complex decisions regarding which notion to employ and are often difficult to use in practice since they make a binary judgement a system is fair or unfair instead of explaining the structure of the detected unfairness. We present an optimal transport-based approach to fairness that offers an interpretable and quantifiable exploration of bias and its structure by comparing a pair of outcomes to one another. In this work, we use the optimal transport map to examine individual, subgroup, and group fairness. Our framework is able to recover well known examples of algorithmic discrimination, detect unfairness when other metrics fail, and explore recourse opportunities.


翻译:为了研究自动化决策系统中的歧视,学者们提出了若干公平定义,每个定义都表达了不同的公平理想,这些定义要求从业者就应采用哪些概念作出复杂决定,而且在实践中往往难以使用,因为他们作出一个二元判断,一个制度是公平或不公平的,而不是解释所发现的不公平结构。我们提出了一个基于运输的公平最佳办法,通过比较一对结果,对偏见及其结构进行可解释和量化的探讨。我们在此工作中利用最佳运输图来审查个人、分组和群体公平性。我们的框架能够恢复众所周知的算法歧视案例,在其他衡量标准失败时发现不公平现象,并探索追索机会。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员