Cross-lingual summarization is the task of generating a summary in one language (e.g., English) for the given document(s) in a different language (e.g., Chinese). Under the globalization background, this task has attracted increasing attention of the computational linguistics community. Nevertheless, there still remains a lack of comprehensive review for this task. Therefore, we present the first systematic critical review on the datasets, approaches, and challenges in this field. Specifically, we carefully organize existing datasets and approaches according to different construction methods and solution paradigms, respectively. For each type of datasets or approaches, we thoroughly introduce and summarize previous efforts and further compare them with each other to provide deeper analyses. In the end, we also discuss promising directions and offer our thoughts to facilitate future research. This survey is for both beginners and experts in cross-lingual summarization, and we hope it will serve as a starting point as well as a source of new ideas for researchers and engineers interested in this area.


翻译:以一种语文(如英文)编写不同语文(如中文)的某一文件摘要(如英文)是一项任务。在全球化背景下,这项任务已引起计算语言界越来越多的注意,然而,仍缺乏对这项任务的全面审查,因此,我们首次对这一领域的数据集、方法和挑战进行系统的严格审查。具体地说,我们分别按照不同的构建方法和解决方案模式,仔细组织现有的数据集和方法。对于每一类数据集或方法,我们全面介绍和总结以往的努力,并进一步相互比较,以提供更深入的分析。最后,我们还讨论有希望的方向,提出我们的想法,以促进今后的研究。这项调查既针对初学者,也针对跨语言的拼图化专家,我们希望它将成为对这一领域感兴趣的研究人员和工程师的新想法的起点和来源。

0
下载
关闭预览

相关内容

计算语言学(Computational Linguistics)是历史最悠久的出版物,专门研究语言的计算和数学特性以及自然语言处理系统的设计和分析。这本备受推崇的季刊为大学和工业界的语言学家、计算语言学家、人工智能和机器学习研究者、认知科学家、语言专家和哲学家提供有关语言研究各个方面的计算方面的最新信息。 官网地址:http://dblp.uni-trier.de/db/journals/coling/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关论文
Arxiv
66+阅读 · 2022年4月13日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
53+阅读 · 2018年12月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员