UV unwrapping flattens 3D surfaces to 2D with minimal distortion, often requiring the complex surface to be decomposed into multiple charts. Although extensively studied, existing UV unwrapping methods frequently struggle with AI-generated meshes, which are typically noisy, bumpy, and poorly conditioned. These methods often produce highly fragmented charts and suboptimal boundaries, introducing artifacts and hindering downstream tasks. We introduce PartUV, a part-based UV unwrapping pipeline that generates significantly fewer, part-aligned charts while maintaining low distortion. Built on top of a recent learning-based part decomposition method PartField, PartUV combines high-level semantic part decomposition with novel geometric heuristics in a top-down recursive framework. It ensures each chart's distortion remains below a user-specified threshold while minimizing the total number of charts. The pipeline integrates and extends parameterization and packing algorithms, incorporates dedicated handling of non-manifold and degenerate meshes, and is extensively parallelized for efficiency. Evaluated across four diverse datasets, including man-made, CAD, AI-generated, and Common Shapes, PartUV outperforms existing tools and recent neural methods in chart count and seam length, achieves comparable distortion, exhibits high success rates on challenging meshes, and enables new applications like part-specific multi-tiles packing. Our project page is at https://www.zhaoningwang.com/PartUV.


翻译:UV展开将三维表面以最小失真展开至二维平面,通常需要将复杂表面分解为多个贴图块。尽管已有广泛研究,现有UV展开方法在处理AI生成网格时仍面临挑战,此类网格通常存在噪声、凹凸不平且几何条件较差的问题。现有方法常产生高度碎片化的贴图块和次优边界,导致伪影并影响下游任务。本文提出PartUV——一种基于部件划分的UV展开流程,能在保持低失真的同时生成数量显著减少且与部件对齐的贴图块。该方法基于近期基于学习的部件分解方法PartField构建,在自上而下的递归框架中,将高层语义部件分解与新颖的几何启发式策略相结合。该方法确保每个贴图块的失真度低于用户指定阈值,同时最小化贴图块总数。该流程集成并扩展了参数化与排布算法,包含对非流形与退化网格的专门处理,并进行了广泛并行化以提升效率。在涵盖人造物体、CAD模型、AI生成网格及通用形状的四个多样化数据集上的评估表明:PartUV在贴图块数量与接缝长度上优于现有工具及近期神经方法,达到可比的失真度,在挑战性网格上展现高成功率,并支持部件级多贴图排布等新应用。项目页面详见:https://www.zhaoningwang.com/PartUV。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员