Recently, graph neural networks (GNNs) have been widely used to develop successful recommender systems. Although powerful, it is very difficult for a GNN-based recommender system to attach tangible explanations of why a specific item ends up in the list of suggestions for a given user. Indeed, explaining GNN-based recommendations is unique, and existing GNN explanation methods are inappropriate for two reasons. First, traditional GNN explanation methods are designed for node, edge, or graph classification tasks rather than ranking, as in recommender systems. Second, standard machine learning explanations are usually intended to support skilled decision-makers. Instead, recommendations are designed for any end-user, and thus their explanations should be provided in user-understandable ways. In this work, we propose GREASE, a novel method for explaining the suggestions provided by any black-box GNN-based recommender system. Specifically, GREASE first trains a surrogate model on a target user-item pair and its $l$-hop neighborhood. Then, it generates both factual and counterfactual explanations by finding optimal adjacency matrix perturbations to capture the sufficient and necessary conditions for an item to be recommended, respectively. Experimental results conducted on real-world datasets demonstrate that GREASE can generate concise and effective explanations for popular GNN-based recommender models.


翻译:最近,平面神经网络(GNN)被广泛用于开发成功的推荐系统。虽然其功能强大,但基于GNN的推荐人系统很难对特定项目最终为何被列入给特定用户的建议清单作出具体的解释。事实上,解释基于GNN的建议是独特的,现有的GNN解释方法有两种原因。首先,传统的GNN解释方法是为节点、边缘或图形分类任务设计的,而不是像建议人系统那样进行排序。第二,标准的机器学习解释通常旨在支持熟练的决策者。相反,建议是为任何最终用户设计的,因此,建议的解释应以用户难以理解的方式提供。在这项工作中,我们提出了GREASE,这是解释任何黑盒子GNN建议系统提供的建议的一种新颖方法。具体地说,GRESE首先为目标用户项目配对及其$l$-hop 邻区设计了一种代名化模型。然后,通过找到最佳的匹配矩阵来生成事实和反事实解释。我们建议GREASE, 分别为基于实际和精确的GASEA系统的数据模型提供有效的测试结果建议。

0
下载
关闭预览

相关内容

【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
19+阅读 · 2019年11月23日
VIP会员
相关VIP内容
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员