Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of these markets and their practical viability. Existing initiatives are still early-stage and have already encountered security and efficiency obstacles. At the same time, existing work around promising ideas, specifically sidechains, fall short in exploiting their full potential in addressing these problems. To bridge this gap, we propose chainBoost, a secure performance booster for decentralized resource markets. It expedites service related operations, reduces the blockchain size, and supports flexible service-payment exchange modalities at low overhead. At its core, chainBoost employs a sidechain, that has a (security and semantic) mutual-dependence with the mainchain, to which the system offloads heavy/frequent operations. To enable it, we develop a novel sidechain architecture composed of temporary and permanent blocks, a block suppression mechanism to prune the sidechain, a syncing protocol to permit arbitrary data exchange between the two chains, and an autorecovery protocol to support robustness and resilience. We analyze the security of chainBoost, and implement a proof-of-concept prototype for a distributed file storage market as a use case. For a market handling around 2000 transactions per round, our experiments show up to 11x improvement in throughput and 94% reduction in confirmation time. They also show that chainBoost can reduce the main blockchain size by around 90%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员