We study the fundamental problem of butterfly (i.e. (2,2)-bicliques) counting in bipartite streaming graphs. Similar to triangles in unipartite graphs, enumerating butterflies is crucial in understanding the structure of bipartite graphs. This benefits many applications where studying the cohesion in a graph shaped data is of particular interest. Examples include investigating the structure of computational graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks over complex real graphs. Butterfly counting is computationally expensive, and known techniques do not scale to large graphs; the problem is even harder in streaming graphs. In this paper, following a data-driven methodology, we first conduct an empirical analysis to uncover temporal organizing principles of butterflies in real streaming graphs and then we introduce an approximate adaptive window-based algorithm, sGrapp, for counting butterflies as well as its optimized version sGrapp-x. sGrapp is designed to operate efficiently and effectively over any graph stream with any temporal behavior. Experimental studies of sGrapp and sGrapp-x show superior performance in terms of both accuracy and efficiency.


翻译:我们研究蝴蝶的基本问题( 即 2,2- 线性) 在双边流图中计数。 类似单方图表中的三角, 计算蝴蝶是理解双方图形结构的关键。 这有益于在图形形状数据中研究凝固性的许多应用。 例如调查算法的计算图或输入图的结构, 以及复杂真实图表中的动态现象和分析任务。 蝴蝶计数是计算成本很高的, 已知技术不比大图表规模大; 流图中的问题甚至更为严重。 在本文中, 我们首先根据数据驱动的方法进行实验性分析, 找出真实流图中蝴蝶的时间组织原理, 然后我们推出一个基于窗口的适应性算法, sGrapp, 用于计算蝴蝶及其优化版 sGrapp-x。 sGrapp 设计的目的是为了以任何时间行为来高效和有效地运行任何图形流。 sGrapp 和 sgrapp-x 的精确性实验性表现优优。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
5+阅读 · 2019年3月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
5+阅读 · 2019年3月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员