The COVID-19 outbreak is asynchronous in US counties. Mitigating the COVID-19 transmission requires not only the state and federal level order of protective measures such as social distancing and testing, but also public awareness of time-dependent risk and reactions at county and community levels. We propose a robust approach to estimate the heterogeneous progression of SARS-CoV-2 at all US counties having no less than 2 COVID-19 associated deaths, and we use the daily probability of contracting (PoC) SARS-CoV-2 for a susceptible individual to quantify the risk of SARS-CoV-2 transmission in a community. We found that shortening by $5\%$ of the infectious period of SARS-CoV-2 can reduce around $39\%$ (or $78$K, $95\%$ CI: $[66$K $, 89$K $]$) of the COVID-19 associated deaths in the US as of 20 September 2020. Our findings also indicate that reducing infection and deaths by a shortened infectious period is more pronounced for areas with the effective reproduction number close to 1, suggesting that testing should be used along with other mitigation measures, such as social distancing and facial mask-wearing, to reduce the transmission rate. Our deliverable includes a dynamic county-level map for local officials to determine optimal policy responses and for the public to better understand the risk of contracting SARS-CoV-2 on each day.


翻译:减少COVID-19传播不仅需要州和联邦一级的保护措施,例如社会疏远和测试,还需要公众认识到各州和社区一级取决于时间的风险和反应。我们建议采取强有力的方法,估计美国所有不少于2COVID-19相关死亡的县SARS-COV-2的复杂进展,我们利用每天签订SARS-COV-2的可能性,使个人能够量化社区内SARS-COV-2传播的风险。我们发现SARS-COV-2传染期缩短了5美元,可以减少大约39美元(或78美元,95美元,CI:截至2020年9月20日,美国与COVID-19相关的死亡为1美元。我们的调查结果还表明,对于有效复制号接近1的地区,通过缩短传染期减少感染和死亡的可能性更为明显。 我们发现,在SARS-2传染期缩短5美元后,将S-CO-2传染期缩短为降低风险,同时将SAS-CO-2传染期的测试与其他减缓风险的每天措施一起使用,例如确定向SAR-CO-DM-S级交付最能化政策。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员