Systematic Literature Reviews (SLRs) play an important role in the Evidence-Based Software Engineering scenario. With the advance of the computer science field and the growth of research publications, new evidence continuously arises. This fact impacts directly on the purpose of keeping SLRs up-to-date which could lead researchers to obsolete conclusions or decisions about a research problem or investigation. Creating and maintaining SLRs up-to-date demand a significant effort due to several reasons such as the rapid increase in the amount of evidence, limitation of available databases and lack of detailed protocol documentation and data availability. Conventionally, in software engineering SLRs are not updated or updated intermittently leaving gaps between updates during which time the SLR may be missing important new research. In order to address these issues, we propose the concept, process and tooling support of Continuous Systematic Literature Review (CSLR) in SE aiming to keep SLRs constantly updated with the promotion of open science practices. This positional paper summarizes our proposal and approach under development.


翻译:系统文学审查(SLR)在循证软件工程设想中发挥了重要作用。随着计算机科学领域的进步和研究出版物的增加,新的证据不断出现。这一事实直接影响到不断更新SLR的目的,使研究人员能够就研究问题或调查作出过时的结论或决定。建立和维持系统文学审查(SLR)由于证据数量迅速增加、现有数据库有限以及缺乏详细的协议文件和数据提供等若干原因作出了重大努力。在软件工程方面,SLR没有不断更新或不断更新,使更新工作在更新工作之间留下间歇性的差距,而在此期间,SLR可能缺少重要的新研究。为了解决这些问题,我们提出了在SE的连续系统文学审查(CLR)的概念、过程和工具支持,目的是通过推广开放的科学实践不断更新SLRs。本立场文件总结了我们的提案和正在开发中的方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
124+阅读 · 2020年9月8日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
24+阅读 · 2020年3月11日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员