The 2030 Challenge is aimed at making all new buildings and major renovations carbon neutral by 2030. One of the potential solutions to meet this challenge is through innovative sustainable design strategies. For developing such strategies it is important to understand how the various building factors contribute to energy usage of a building, right at design time. The growth of artificial intelligence (AI) in recent years provides an unprecedented opportunity to advance sustainable design by learning complex relationships between building factors from available data. However, rich training datasets are needed for AI-based solutions to achieve good prediction accuracy. Unfortunately, obtaining training datasets are time consuming and expensive in many real-world applications. Motivated by these reasons, we address the problem of accurately predicting the energy usage of new or unknown building types, i.e., those building types that do not have any training data. We propose a novel approach based on zero-shot learning (ZSL) to solve this problem. Our approach uses side information from building energy modeling experts to predict the closest building types for a given new/unknown building type. We then obtain the predicted energy usage for the k-closest building types using the models learned during training and combine the predicted values using a weighted averaging function. We evaluated our approach on a dataset containing five building types generated using BuildSimHub, a popular platform for building energy modeling. Our approach achieved better average accuracy than a regression model (based on XGBoost) trained on the entire dataset of known building types.


翻译:2030年挑战的目标是,到2030年使所有新建筑和重大翻修成为碳中和。迎接这一挑战的一个潜在解决办法是创新的可持续设计战略。为了制定这样的战略,重要的是要了解各种建筑因素如何在设计时有助于建筑物的能源使用。近年来人工智能的增长提供了一个前所未有的机会,通过从现有数据中学习建筑因素之间的复杂关系来推进可持续设计。然而,为了实现良好的预测准确性,AI基础解决方案需要丰富的培训数据集。不幸的是,在许多现实世界应用中,获得培训数据集耗费时间且费用昂贵。基于这些原因,我们解决了准确预测新建筑类型或未知建筑类型能源使用情况的问题,即那些没有任何培训数据的建筑类型。近年来人工智能(AI)提供了前所未有的机会,通过学习从现有数据中学习各种因素(ZSL)来推动这一问题的解决。我们的方法是利用从建设能源模型专家到最接近的模型类型来预测某个新的/已知的建筑型号。我们随后利用所学的模型为最接近的建筑型号获得预测的能源使用量,而不是使用在培训过程中所学的模型,即准确性模型,即那些没有任何培训数据类型的建筑型号的建筑类型。我们用一个预测的模型,我们用的是我们所测算的模型,我们所测算的模型,用一个能的模型,用我们所测算的模型,用一个模型,用我们所测算的模型,用一种我们所学的模型,用一种我们用一种我们所测的模型,用一种我们所造的模型,用一种我们所学的模型,用的一种模型,用一种我们测的模型,我们用一个已测的模型,我们用一种我们用一个已测的模型,我们用的一种模型,我们用的一种模型,用一种我们用一种我们测的模型,用一种我们用一种我们用一种我们测的模型,用一种我们用的是一种我们用的一种模型,我们用的是一种我们用一种我们用的一种模型,我们用的一种模型,我们用一种我们用的一种模型,用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们用一种我们测的模型,用一种我们测的能源方法,用一种我们用一种我们用一种我们用一种我们测制制的模型,用一种我们测制制制制制制制的

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年3月29日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员