Throughout science and technology, receiver operating characteristic (ROC) curves and associated area under the curve (AUC) measures constitute powerful tools for assessing the predictive abilities of features, markers and tests in binary classification problems. Despite its immense popularity, ROC analysis has been subject to a fundamental restriction, in that it applies to dichotomous (yes or no) outcomes only. Here we introduce ROC movies and universal ROC (UROC) curves that apply to just any linearly ordered outcome, along with an associated coefficient of predictive ability (CPA) measure. CPA equals the area under the UROC curve, and admits appealing interpretations in terms of probabilities and rank based covariances. For binary outcomes CPA equals AUC, and for pairwise distinct outcomes CPA relates linearly to Spearman's coefficient, in the same way that the C index relates linearly to Kendall's coefficient. ROC movies, UROC curves, and CPA nest and generalize the tools of classical ROC analysis, and are bound to supersede them in a wealth of applications. Their usage is illustrated in data examples from biomedicine and meteorology, where rank based measures yield new insights in the WeatherBench comparison of the predictive performance of convolutional neural networks and physical-numerical models for weather prediction.


翻译:在整个科学和技术中,在曲线(AUC)措施下,接收器运行特征(ROC)曲线和相关领域是评估二进制分类问题中特征、标记和测试的预测能力的有力工具,尽管其广度很大,但ROC分析受到根本的限制,因为它只适用于二进制(是或不是)结果。这里我们介绍的是适用于任何线性排列结果的OC电影和通用ROC(UROC)曲线,以及相关的预测能力系数(CPA)测量。CPA相当于UROC曲线下的区域,并承认在概率和等级差异方面有吸引力的解释。对于二进制结果(CPA)等于AUC,而对于双进制不同的结果(CPA)则与Spearman的系数有线性联系。这里我们介绍的是,C指数与Kendall的系数有线性联系。ROC电影、UROC曲线和CPA巢,以及古典ROC分析工具的一般化,并有义务在丰富的应用模型中取代这些区域。对于二进制结果结果结果结果的预测,其使用情况在生物气象预测和数字的模型中以新的天气预测性水平为基准。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员