Internet of Things (IoT) devices are rapidly expanding in many areas, including deep mines, space, industrial environments, and health monitoring systems. Most of the sensors and actuators are battery-powered, and these batteries have a finite lifespan. Maintaining and replacing these many batteries increases the maintenance cost of IoT systems and causes massive environmental damage. Energy-harvesting devices (EHDs) are the alternative and promising solution for these battery-operated IoT devices. These EHDs collect energy from the environment and use it for daily computations, like collecting and processing data from the sensors and actuators. Using EHDs in IoT reduces overall maintenance costs and makes the IoT system energy-sufficient. However, energy availability from these EHDs is unpredictable, resulting in frequent power failures. Most of these devices use volatile memories as storage elements, implying that all collected data and decisions made by the IoT devices are lost during frequent power failures, resulting in two possible overheads. First, the IoT device must execute the application from the beginning whenever power comes back. Second, IoT devices may make wrong decisions by considering incomplete data, i.e., data-inconsistency issues. To address these two challenges, a computing model is required that backs up the collected data during power failures and restores it for later computations; this type of computing is defined as intermittent computing. However, this computing model doesn't work with conventional processors or memories. Non-volatile memory and processors are required to design a battery-less IoT device that supports intermittent computing.
翻译:暂无翻译