We present an efficient method for joint optimization of topology, materials and lighting from multi-view image observations. Unlike recent multi-view reconstruction approaches, which typically produce entangled 3D representations encoded in neural networks, we output triangle meshes with spatially-varying materials and environment lighting that can be deployed in any traditional graphics engine unmodified. We leverage recent work in differentiable rendering, coordinate-based networks to compactly represent volumetric texturing, alongside differentiable marching tetrahedrons to enable gradient-based optimization directly on the surface mesh. Finally, we introduce a differentiable formulation of the split sum approximation of environment lighting to efficiently recover all-frequency lighting. Experiments show our extracted models used in advanced scene editing, material decomposition, and high quality view interpolation, all running at interactive rates in triangle-based renderers (rasterizers and path tracers). Project website: https://nvlabs.github.io/nvdiffrec/ .
翻译:我们提出了一种从多视图图像观测中联合优化地形学、材料和照明的有效方法。与最近的多视图重建方法不同,这些方法通常产生在神经网络中编码的缠绕的3D表示式,我们输出三角模件,配有空间变化材料和环境照明,可在任何传统的图形引擎中不加修改地部署,我们利用最近的可变成像、基于协调的网络工作,在可变成像、可协调的网络中集中代表体积纹理,与可变四面形推进的四面形相配合,以便直接在表面网状上实现基于梯度的优化。最后,我们引入了环境照明分离和相近的可区别公式,以有效恢复所有频率的照明。实验显示了我们在高级现场编辑、材料分解和高品质的视图内插器中使用的提取模型,所有这些模型都以互动速度在三角制成器(拉斯特和路径跟踪器)中运行。项目网站:https://nvlabs.github.io/nvdiffrec/。