In the present work we propose and study a time discrete scheme for the following chemotaxis-consumption model (for any $s\ge 1$), $$ \partial_t u - \Delta u = - \nabla \cdot (u \nabla v), \quad \partial_t v - \Delta v = - u^s v \quad \hbox{in $(0,T)\times \Omega$,}$$ endowed with isolated boundary conditions and initial conditions, where $(u,v)$ model cell density and chemical signal concentration. The proposed scheme is defined via a reformulation of the model, using the auxiliary variable $z = \sqrt{v + \alpha^2}$ combined with a Backward Euler scheme for the $(u,z)$-problem and a upper truncation of $u$ in the nonlinear chemotaxis and consumption terms. Then, two different ways of retrieving an approximation for the function $v$ are provided. We prove the existence of solution to the time discrete scheme and establish uniform in time \emph{a priori} estimates, yielding the convergence of the scheme towards a weak solution $(u,v)$ of the chemotaxis-consumption model.
翻译:暂无翻译