Despite the impressive progress in the field of presentation attack detection and multimedia forensics over the last decade, these systems are still vulnerable to attacks in real-life settings. Some of the challenges for existing solutions are the detection of unknown attacks, the ability to perform in adversarial settings, few-shot learning, and explainability. In this study, these limitations are approached by reliance on a game-theoretic view for modeling the interactions between the attacker and the detector. Consequently, a new optimization criterion is proposed and a set of requirements are defined for improving the performance of these systems in real-life settings. Furthermore, a novel detection technique is proposed using generator-based feature sets that are not biased towards any specific attack species. To further optimize the performance on known attacks, a new loss function coined categorical margin maximization loss (C-marmax) is proposed which gradually improves the performance against the most powerful attack. The proposed approach provides a more balanced performance across known and unknown attacks and achieves state-of-the-art performance in known and unknown attack detection cases against rational attackers. Lastly, the few-shot learning potential of the proposed approach is studied as well as its ability to provide pixel-level explainability.


翻译:尽管过去十年来在演示攻击探测和多媒体法证领域取得了令人印象深刻的进展,但这些系统仍然容易在现实环境中受到攻击,现有解决办法面临的一些挑战包括发现未知攻击、在对抗环境中进行表演的能力、短片学习和可解释性。在本研究中,这些限制是通过依靠游戏理论观点来看待的,以模拟攻击者与探测者之间的相互作用。因此,提出了新的优化标准,并确定了一套要求,以改善这些系统在现实生活中的性能。此外,还提议了一种新型的探测技术,使用不偏向任何特定攻击物种的基于发电机的特征组。为了进一步优化已知攻击的性能,提议了一个新的损失函数,即催化断断层最大化损失(C-marmax),以逐步改善攻击者与最强大的攻击的性能。拟议方法提供了一种更平衡的已知和未知攻击性能,并实现了已知和未知攻击性攻击者攻击性能的先进性能。最后,正在研究拟议方法的微小的学习潜力,以解释其提供像素水平的能力。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员