This paper introduces a scalable methodology for the objective analysis of quality metrics across six major Italian metropolitan areas: Rome, Bologna, Florence, Milan, Naples, and Palermo. Leveraging georeferenced Street View imagery and an advanced Urban Vision Intelligence system, we systematically classify the visual environment, focusing on key metrics such as the Pavement Condition Index (PCI) and the Façade Degradation Score (FDS). The findings quantify Structural Heterogeneity (Spatial Variance), revealing significant quality dispersion (e.g., Milan $σ^2_{\mathrm{PCI}}=1.52$), and confirm that the classical Urban Gradient -- quality variation as a function of distance from the core -- is consistently weak across all sampled cities ($R^2 < 0.03$), suggesting a complex, polycentric, and fragmented morphology. In addition, a Cross-Metric Correlation Analysis highlights stable but modest interdependencies among visual dimensions, most notably a consistent positive association between façade quality and greenery ($ρ\approx 0.35$), demonstrating that structural and contextual urban qualities co-vary in weak yet interpretable ways. Together, these results underscore the diagnostic potential of Vision Intelligence for capturing the integrated spatial and morphological structure of Italian cities and motivate a large national-scale analysis.
翻译:本文提出一种可扩展的方法论,用于对意大利六大都市区——罗马、博洛尼亚、佛罗伦萨、米兰、那不勒斯和巴勒莫——的质量指标进行客观分析。通过整合地理参照街景影像与先进的Urban Vision Intelligence系统,我们系统性地对视觉环境进行分类,重点关注路面状况指数(PCI)和立面退化评分(FDS)等关键指标。研究结果量化了结构异质性(空间方差),揭示了显著的质量离散性(例如米兰的$σ^2_{\mathrm{PCI}}=1.52$),并证实经典的城市梯度——即质量随距城市核心距离的变化——在所有抽样城市中均呈现一致弱相关性($R^2 < 0.03$),暗示了复杂、多中心且碎片化的城市形态。此外,跨指标相关性分析揭示了视觉维度间稳定但有限的相互依存关系,其中最显著的是立面质量与绿化覆盖率之间持续的正相关($ρ≈0.35$),表明城市的结构属性与情境属性以微弱但可解释的方式协同变化。这些结果共同凸显了视觉智能在捕捉意大利城市综合空间与形态结构方面的诊断潜力,并为开展全国尺度的大规模分析提供了依据。