This paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle inequalities for the sparse-group LASSO estimator within a framework that allows for the mixing processes and recognizes that the financial and the macroeconomic data may have heavier than exponential tails. An empirical application to nowcasting US GDP growth indicates that the estimator performs favorably compared to other alternatives and that the text data can be a useful addition to more traditional numerical data
翻译:本文介绍了可能在不同频率取样的高维时间序列数据的结构化机器学习回归。 分散的 LASSO 测量器可以利用这种时间序列数据结构,并优于无结构的 LASSO 。 我们为分散的 LASSO 测量器建立甲骨骼不平等, 其框架允许混合过程, 并承认金融和宏观经济数据可能比指数尾巴要重。 对现在预测美国GDP增长的经验应用表明, 测量器与其他替代品相比表现优异, 文本数据可以成为更传统的数字数据的有益补充。