It is promising but challenging to design flocking control for a robot swarm to autonomously follow changing patterns or shapes in a optimal distributed manner. The optimal flocking control with dynamic pattern formation is, therefore, investigated in this paper. A predictive flocking control algorithm is proposed based on a Gibbs random field (GRF), where bio-inspired potential energies are used to charaterize ``robot-robot'' and ``robot-environment'' interactions. Specialized performance-related energies, e.g., motion smoothness, are introduced in the proposed design to improve the flocking behaviors. The optimal control is obtained by maximizing a posterior distribution of a GRF. A region-based shape control is accomplished for pattern formation in light of a mean shift technique. The proposed algorithm is evaluated via the comparison with two state-of-the-art flocking control methods in an environment with obstacles. Both numerical simulations and real-world experiments are conducted to demonstrate the efficiency of the proposed design.
翻译:暂无翻译