In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.


翻译:本研究探索了利用量子自然语言处理(QNLP)逆向设计具有目标性质的金属有机框架(MOF)的潜力。具体而言,通过分析包含3种拓扑结构、10种金属节点和15种有机配体的450种假设MOF结构,我们根据孔体积和$CO_{2}$亨利常数将这些结构划分为四个不同类别。随后,我们比较了多种QNLP模型(包括词袋模型、DisCoCat(分布式组合范畴)模型和序列模型),以确定处理MOF数据集的最有效方法。利用IBM Qiskit提供的经典模拟器,词袋模型被确定为最优模型,在孔体积和$CO_{2}$亨利常数的二元分类任务中分别达到88.6%和78.0%的验证准确率。进一步地,我们针对量子电路的概率特性开发了多类别分类模型,在孔体积和$CO_{2}$亨利常数数据集的不同类别中平均测试准确率分别达到92%和80%。最终,生成具有目标性质MOF的性能显示,孔体积和$CO_{2}$亨利常数的准确率分别为93.5%和87%。尽管本研究仅覆盖了广阔MOF搜索空间的一小部分,但它标志着利用量子计算进行材料设计的一个有前景的初步探索,为探索MOF的复杂构效关系提供了新的视角。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
48+阅读 · 2023年4月16日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员