In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.
翻译:本研究探索了利用量子自然语言处理(QNLP)逆向设计具有目标性质的金属有机框架(MOF)的潜力。具体而言,通过分析包含3种拓扑结构、10种金属节点和15种有机配体的450种假设MOF结构,我们根据孔体积和$CO_{2}$亨利常数将这些结构划分为四个不同类别。随后,我们比较了多种QNLP模型(包括词袋模型、DisCoCat(分布式组合范畴)模型和序列模型),以确定处理MOF数据集的最有效方法。利用IBM Qiskit提供的经典模拟器,词袋模型被确定为最优模型,在孔体积和$CO_{2}$亨利常数的二元分类任务中分别达到88.6%和78.0%的验证准确率。进一步地,我们针对量子电路的概率特性开发了多类别分类模型,在孔体积和$CO_{2}$亨利常数数据集的不同类别中平均测试准确率分别达到92%和80%。最终,生成具有目标性质MOF的性能显示,孔体积和$CO_{2}$亨利常数的准确率分别为93.5%和87%。尽管本研究仅覆盖了广阔MOF搜索空间的一小部分,但它标志着利用量子计算进行材料设计的一个有前景的初步探索,为探索MOF的复杂构效关系提供了新的视角。