Socialbots are software-driven user accounts on social platforms, acting autonomously (mimicking human behavior), with the aims to influence the opinions of other users or spread targeted misinformation for particular goals. As socialbots undermine the ecosystem of social platforms, they are often considered harmful. As such, there have been several computational efforts to auto-detect the socialbots. However, to our best knowledge, the adversarial nature of these socialbots has not yet been studied. This begs a question "can adversaries, controlling socialbots, exploit AI techniques to their advantage?" To this question, we successfully demonstrate that indeed it is possible for adversaries to exploit computational learning mechanism such as reinforcement learning (RL) to maximize the influence of socialbots while avoiding being detected. We first formulate the adversarial socialbot learning as a cooperative game between two functional hierarchical RL agents. While one agent curates a sequence of activities that can avoid the detection, the other agent aims to maximize network influence by selectively connecting with right users. Our proposed policy networks train with a vast amount of synthetic graphs and generalize better than baselines on unseen real-life graphs both in terms of maximizing network influence (up to +18%) and sustainable stealthiness (up to +40% undetectability) under a strong bot detector (with 90% detection accuracy). During inference, the complexity of our approach scales linearly, independent of a network's structure and the virality of news. This makes our approach a practical adversarial attack when deployed in a real-life setting.


翻译:社交机器人是社会平台上由软件驱动的用户账户,他们自主行动(模仿人类行为),目的是影响其他用户的意见,或传播特定目标的定向错误信息。社会机器人破坏社会平台的生态系统,因此往往被视为有害。因此,我们曾作出数项计算努力,自动检测社交机器人。然而,据我们所知,这些社交机器人的对抗性质尚未研究。这引起了一个问题,即“能够对手,控制社交机器人,利用AI技术为自己谋利?”至此,我们成功地证明对手有可能利用计算学习机制,如强化学习(RL),以最大限度地扩大社交机器人的影响,同时避免被察觉。我们首先将对抗社交机器人学习设计为两个功能等级的RL代理之间的合作游戏。虽然一个代理商为一系列可以避免被检测的活动,但另一个代理商的目的是通过有选择地与正确的用户连接来最大限度地扩大网络影响。我们拟议的政策网络将大量合成图表和广度提高到一个比真实网络的基线更准确性(在真实的网络中,在真实的扫描时间里程时间里程中) 和直线性定位中将一个比基线更精确地设定一个更精确的网络。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
7+阅读 · 2018年12月26日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员