Virtual cell optimization clusters cells into neighborhoods and performs optimized resource allocation over each neighborhood. In prior works we proposed resource allocation schemes to mitigate the interference caused by transmissions in the same virtual cell. This work aims at mitigating both the interference caused by the transmissions of users in the same virtual cell and the interference between transmissions in different virtual cells. We propose a resource allocation technique that reduces the number of users that cannot achieve their constant guaranteed bit rate, i.e., the "unsatisfied users", in an uplink virtual cell system with cooperative decoding. The proposed scheme requires only the knowledge of the number of users each base station serves and relies on creating the interference graph between base stations at the edges of virtual cells. Allocation of frequency bands to users is based on the number of users each base station would serve in a non cooperative setup. We evaluate the performance of our scheme for a mmWave system. Our numerical results show that our scheme decreases the number of users in the system whose rate falls below the guaranteed rate, set to $128$kbps, $256$kbps or $512$kbps, when compared with our previously proposed optimization methods.


翻译:虚拟细胞优化集聚细胞到邻里, 并进行每个邻里的最佳资源分配。 在先前的工程中, 我们提出资源分配计划, 以减轻同一虚拟细胞传输造成的干扰。 这项工作旨在减轻同一虚拟细胞用户传输造成的干扰和不同虚拟细胞传输之间的干扰。 我们提出资源分配技术, 减少无法达到其固定保障比特率的用户数量, 即“ 不满意用户 ”, 在一个带有合作解码的上行虚拟细胞系统中。 拟议的计划仅要求了解每个基站服务并依赖在虚拟细胞边缘建立基站间干扰图的用户数量。 给用户的频率波段分配以每个基站的用户数量为基础, 在不合作的设置中服务于每个基站。 我们评估了一个毫米Wave系统的计划性能。 我们的数字结果显示, 我们的计划将低于保障比值的系统用户数量减少到128kbps、 256kbps 或 512kbps, 与我们先前提议的优化方法相比, 我们的计划减少了系统中比率低于保证率的用户数量, 设定为 128kbps、 256kbps或512kbps。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月15日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员