This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.
翻译:这项工作展示了神经等量共振潜能(NequIP),这是一种E(3)等量神经网络方法,用于从分子动态模拟的AB-iintio计算中学习从分子动态模拟的AB-itio计算中产生的共振潜力。虽然大多数当代对称性对等模型使用的是异变共振模型,仅对电弧作用采取行动,但NequIP使用E(3)等量共振变动,以几何制振量体相相互作用,从而导致原子环境的信息丰富和忠实的表述。该方法在展示显著的数据效率的同时,实现了一套具有挑战性和多样性的分子和材料的最新准确性。NequIP以最多三个数量的培训数据优于现有模型,挑战了人们普遍认为深神经网络需要大规模培训的信念。该方法的高数据效率使得能够利用高分量化学水平的理论作为参考来构建准确的潜力,并能够长期进行高密度分子动态模拟。