Formal reasoning about hashing-based probabilistic data structures often requires reasoning about random variables where when one variable gets larger (such as the number of elements hashed into one bucket), the others tend to be smaller (like the number of elements hashed into the other buckets). This is an example of negative dependence, a generalization of probabilistic independence that has recently found interesting applications in algorithm design and machine learning. Despite the usefulness of negative dependence for the analyses of probabilistic data structures, existing verification methods cannot establish this property for randomized programs. To fill this gap, we design LINA, a probabilistic separation logic for reasoning about negative dependence. Following recent works on probabilistic separation logic using separating conjunction to reason about the probabilistic independence of random variables, we use separating conjunction to reason about negative dependence. Our assertion logic features two separating conjunctions, one for independence and one for negative dependence. We generalize the logic of bunched implications (BI) to support multiple separating conjunctions, and provide a sound and complete proof system. Notably, the semantics for separating conjunction relies on a non-deterministic, rather than partial, operation for combining resources. By drawing on closure properties for negative dependence, our program logic supports a Frame-like rule for negative dependence and monotone operations. We demonstrate how LINA can verify probabilistic properties of hash-based data structures and balls-into-bins processes.


翻译:关于基于散逸的概率数据结构的正式推理往往要求随机变量的推理,当一个变量变数变大时(例如成一个桶的元素数量),其他变数则变小(例如成一个桶的元素数量),而其他变数则变小(例如成一个桶的元素数量),而其他变数则变小。这是消极依赖、概率独立的概括化、最近在算法设计和机器学习中发现对逻辑设计和机器学习的有趣应用中发现两种相容性。尽管对概率数据结构分析的负依赖性是有用的,但现有的核查方法无法为随机化程序建立这种属性。为了填补这一空白,我们设计了利通纳,这是关于消极依赖性推理的概率分离逻辑逻辑逻辑逻辑逻辑逻辑逻辑逻辑。在近期关于概率分离的逻辑逻辑逻辑逻辑推理学逻辑推论中,将随机变量分离逻辑推理与随机变量推理分开,我们用非逻辑推理的逻辑推理推理法性推理法的推理推理学,而不是部分推理法推理法推理推理推理法推理推理推理法推理法推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理,我们推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理推理

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月29日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员