In spatially embedded networks such as transportation and power grids, understanding how edge removals affect connectivity is crucial for robustness analysis. This paper studies a planar graph dismantling problem under an edge-budget constraint. We propose a spanning-tree-skeleton dual-path framework that first samples multiple uniform spanning trees to capture network backbones and then adaptively selects between two complementary paths according to the budget. The small-budget path estimates a dismantlable subgraph fraction using a logarithmic density feature, while the large-budget path predicts the optimal partition count through a slope-based model. Experiments on random planar graphs demonstrate near-linear runtime scaling, consistent reductions in the largest connected component ratio, and clear budget-fragmentation trends. The method provides an interpretable and efficient approach for planar-network robustness analysis.
翻译:在交通网络和电网等空间嵌入网络中,理解边移除如何影响连通性对于鲁棒性分析至关重要。本文研究了边预算约束下的平面图拆解问题。我们提出了一个生成树骨架双路径框架,该框架首先采样多个均匀生成树以捕捉网络骨干,然后根据预算自适应地在两条互补路径之间进行选择。小预算路径利用对数密度特征估计可拆解子图的比例,而大预算路径则通过基于斜率的模型预测最优分区数量。在随机平面图上的实验表明,该方法具有接近线性的运行时间扩展性、最大连通分量比的一致降低以及清晰的预算-碎片化趋势。该方法为平面网络鲁棒性分析提供了一种可解释且高效的途径。