We construct finite element approximations of the Levi-Civita connection and its curvature on triangulations of oriented two-dimensional manifolds. Our construction relies on the Regge finite elements, which are piecewise polynomial symmetric (0,2)-tensor fields possessing single-valued tangential-tangential components along element interfaces. When used to discretize the Riemannian metric tensor, these piecewise polynomial tensor fields do not possess enough regularity to define connections and curvature in the classical sense, but we show how to make sense of these quantities in a distributional sense. We then show that these distributional quantities converge in certain dual Sobolev norms to their smooth counterparts under refinement of the triangulation. We also discuss projections of the distributional curvature and distributional connection onto piecewise polynomial finite element spaces. We show that the relevant projection operators commute with certain linearized differential operators, yielding a commutative diagram of differential complexes.
翻译:我们构建了利维塔连接的有限元素近似值及其在定向二维元元体三角配方上的曲线。 我们的构造依赖于Regge 限制元素, 这些元素是小巧的多元对称( 0, 2)- 强度字段, 在元素界面上拥有单值的相近- 切异组件。 当用于分解里伊曼尼纳的度量强时, 这些片断的多元振幅字段没有足够固定性来定义传统意义上的连接和曲度, 但是我们展示了如何在分布上理解这些数量。 然后我们展示了这些分布数量在某种双双 Sobolev 规范中, 在对三角的精细化下, 与它们的平滑对齐。 我们还讨论了分布曲线和分布连接的预测, 用于分解多诺米元素空间。 我们展示了相关投影操作器与某些线化差异操作器通勤, 得出了差异复合体的通感应图 。